循环神经网络
本节介绍循环神经网络,下图展示了如何基于循环神经网络实现语言模型。我们的目的是基于当前的输入与过去的输入序列,预测序列的下一个字符。循环神经网络引入一个隐藏变量$H$,用$H_{t}$表示$H$在时间步$t$的值。$H_{t}$的计算基于$X_{t}$和$H_{t-1}$,可以认为$H_{t}$记录了到当前字符为止的序列信息,利用$H_{t}$对序列的下一个字符进行预测。
循环神经网络的构造
我们先看循环神经网络的具体构造。假设$\boldsymbol{X}_t \in \mathbb{R}^{n \times d}$是时间步$t$的小批量输入,$\boldsymbol{H}_t \in \mathbb{R}^{n \times h}$是该时间步的隐藏变量,则:
$$
\boldsymbol{H}t = \phi(\boldsymbol{X}_t \boldsymbol{W}{xh} + \boldsymbol{H}{t-1} \boldsymbol{W}{hh} + \boldsymbol{b}_h).
$$
其中,$\boldsymbol{W}{xh} \in \mathbb{R}^{d \times h}$,$\boldsymbol{W}{hh} \in \mathbb{R}^{h \times h}$,$\boldsymbol{b}{h} \in \mathbb{R}^{1 \times h}$,$\phi$函数是非线性激活函数。由于引入了$\boldsymbol{H}{t-1} \boldsymbol{W}{hh}$,$H{t}$能够捕捉截至当前时间步的序列的历史信息,就像是神经网络当前时间步的状态或记忆一样。由于$H_{t}$的计算基于$H_{t-1}$,上式的计算是循环的,使用循环计算的网络即循环神经网络(recurrent neural network)。
在时间步$t$,输出层的输出为:
$$
\boldsymbol{O}t = \boldsymbol{H}_t \boldsymbol{W}{hq} + \boldsymbol{b}_q.
$$
其中$\boldsymbol{W}_{hq} \in \mathbb{R}^{h \times q}$,$\boldsymbol{b}_q \in \mathbb{R}^{1 \times q}$。
从零开始实现循环神经网络
我们先尝试从零开始实现一个基于字符级循环神经网络的语言模型,这里我们使用周杰伦的歌词作为语料,首先我们读入数据:
1 | import torch |
one-hot向量
我们需要将字符表示成向量,这里采用one-hot向量。假设词典大小是$N$,每次字符对应一个从$0$到$N-1$的唯一的索引,则该字符的向量是一个长度为$N$的向量,若字符的索引是$i$,则该向量的第$i$个位置为$1$,其他位置为$0$。下面分别展示了索引为0和2的one-hot向量,向量长度等于词典大小。
1 | def one_hot(x, n_class, dtype=torch.float32): |
tensor([[1., 0., 0., ..., 0., 0., 0.],
[0., 0., 1., ..., 0., 0., 0.]])
torch.Size([2, 1027])
tensor([1., 1.])
我们每次采样的小批量的形状是(批量大小, 时间步数)。下面的函数将这样的小批量变换成数个形状为(批量大小, 词典大小)的矩阵,矩阵个数等于时间步数。也就是说,时间步$t$的输入为$\boldsymbol{X}_t \in \mathbb{R}^{n \times d}$,其中$n$为批量大小,$d$为词向量大小,即one-hot向量长度(词典大小)。
1 | def to_onehot(X, n_class): # X:小批量 |
5 torch.Size([2, 1027])
初始化模型参数
1 | num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size |
定义模型
函数rnn
用循环的方式依次完成循环神经网络每个时间步的计算。
1 | def rnn(inputs, state, params): |
函数init_rnn_state初始化隐藏变量,这里的返回值是一个元组。
1 | def init_rnn_state(batch_size, num_hiddens, device): |
做个简单的测试来观察输出结果的个数(时间步数),以及第一个时间步的输出层输出的形状和隐藏状态的形状。
1 | print(X.shape) # 输入批量,批量大小2,时间步数5 |
torch.Size([2, 5])
256
1027
5 torch.Size([2, 1027])
5 torch.Size([2, 1027])
1 torch.Size([2, 256])
1 torch.Size([2, 256])
裁剪梯度
循环神经网络中较容易出现梯度衰减或梯度爆炸,这会导致网络几乎无法训练。
原因:BPTT,梯度幂指数为时间步数,时间步数增加,导致梯度衰减或梯度爆炸。
裁剪梯度(clip gradient)是一种应对梯度爆炸的方法。假设我们把所有模型参数的梯度拼接成一个向量 $\boldsymbol{g}$,并设裁剪的阈值是$\theta$。裁剪后的梯度
$$
\min\left(\frac{\theta}{|\boldsymbol{g}|}, 1\right)\boldsymbol{g}
$$
的$L_2$范数不超过$\theta$。
1 | def grad_clipping(params, theta, device): |
定义预测函数
以下函数基于前缀prefix
(含有数个字符的字符串)来预测接下来的num_chars
个字符。这个函数稍显复杂,其中我们将循环神经单元rnn
设置成了函数参数,这样在后面小节介绍其他循环神经网络时能重复使用这个函数。
1 | def predict_rnn(prefix, num_chars, rnn, params, init_rnn_state, |
我们先测试一下predict_rnn
函数。我们将根据前缀“分开”创作长度为10个字符(不考虑前缀长度)的一段歌词。因为模型参数为随机值,所以预测结果也是随机的。
1 | predict_rnn('分开', 10, rnn, params, init_rnn_state, num_hiddens, vocab_size, |
'分开涯啊黑其而坦望胖世文'
困惑度
我们通常使用困惑度(perplexity)来评价语言模型的好坏。回忆一下“softmax回归”一节中交叉熵损失函数的定义。困惑度是对交叉熵损失函数做指数运算后得到的值。特别地,
- 最佳情况下,模型总是把标签类别的概率预测为1,此时困惑度为1;
- 最坏情况下,模型总是把标签类别的概率预测为0,此时困惑度为正无穷;
- 基线情况下,模型总是预测所有类别的概率都相同,此时困惑度为类别个数。
显然,任何一个有效模型的困惑度必须小于类别个数。在本例中,困惑度必须小于词典大小vocab_size
。
定义模型训练函数
跟之前章节的模型训练函数相比,这里的模型训练函数有以下几点不同:
- 使用困惑度评价模型。
- 在迭代模型参数前裁剪梯度。
- 对时序数据采用不同采样方法将导致隐藏状态初始化的不同。
1 | def train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens, |
训练模型并创作歌词
现在我们可以训练模型了。首先,设置模型超参数。我们将根据前缀“分开”和“不分开”分别创作长度为50个字符(不考虑前缀长度)的一段歌词。我们每过50个迭代周期便根据当前训练的模型创作一段歌词。
1 | num_epochs, num_steps, batch_size, lr, clipping_theta = 250, 35, 32, 1e2, 1e-2 |
下面采用随机采样训练模型并创作歌词。
1 | train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens, |
epoch 50, perplexity 72.377805, time 0.72 sec
- 分开 我想要再 你 我有 我 你知了 我有 我想 我不要 爱情我 娘子我 我想我 你子我 我想我 你子
- 不分开 我想要 你我的让我疯狂的可爱女人 温坏的让我疯狂的可爱女人 温坏的让我疯狂的可爱女人 温坏的让我
epoch 100, perplexity 10.342263, time 0.83 sec
- 分开 一直两老三 后悔你的太笑 然杰是你板 我马儿再想 我不能再想 我不能再想 我不能再想 我不能再想
- 不分开吗 是一直的爱女 我想你你的微笑 我都你这的微笑每天都能不到 我知道这里很听一定乡 你的那界坦
epoch 150, perplexity 2.860931, time 0.78 sec
- 分开 一直两老哭 还是蜡人 温家怕空出 白色蜡烛 温暖了空屋 白色蜡烛 温暖了空屋 白色蜡烛 温暖了空屋
- 不分开吗 我想你爸 你打我妈 这样 从壶你真了每日 我的认真败给黑色幽你 经着心很满药雕晴的门窗 夕阳斜斜
epoch 200, perplexity 1.585580, time 0.73 sec
- 分开 一只两老 快使用双截棍 哼 哈兮 习使得双截棍 仁北 用里意血 戒指在哭泣 静静躺在抽屉 它所拥有
- 不分开扫把的胖女巫 用拉丁文念咒语啦啦呜 她养的黑猫笑起来像哭 啦啦啦呜 在小村外的溪边 默默等待 娘子
epoch 250, perplexity 1.293091, time 0.76 sec
- 分开 沙什么用哭 爱话能美 让家怕空出 白色蜡烛 温暖了空屋 白色蜡烛 温暖了空屋 白色蜡烛 温暖了空屋
- 不分开吗 然后将过去 慢慢温习 让我爱上你 那场悲剧 是你完美演出的一场戏 宁愿心碎哭泣 再狠狠忘记 你爱
接下来采用相邻采样训练模型并创作歌词。
1 | train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens, |
epoch 50, perplexity 62.846929, time 0.77 sec
- 分开 我想我这 你谁我有 我想一场 我有我有 有让我有 你有我有 你有我有 你有我有 你有我有 你有我有
- 不分开 我不要这 我有我有 你有我有 你有我有 你有我有 你有我有 你有我有 你有我有 你有我有 你有我有
epoch 100, perplexity 7.427401, time 0.79 sec
- 分开 一颗她 一颗两人三步四步 连成线背著背默默许下心愿 我给你的爱写在西元前 深埋在美索不达米亚平 我
- 不分开觉 我想 这样的美旧 我不儿 想情我的太快 像话去对医药箱说 别怪我 别怪我 别你的手我的红处可头
epoch 150, perplexity 2.117438, time 0.79 sec
- 分开 一候她 三颗我都起头 有话去对医药箱说 别怪我 别怪我 说你怎么面对我 甩开球我满腔的怒火 我想揍
- 不分开觉 你是 这穿棍血型 就底样直说 三对就什么 到不懂不奇 有对不要走 三对三斗驳 有种什么走 到对什
epoch 200, perplexity 1.307415, time 0.73 sec
- 分开 问候我 谁地神枪手 巫师 他念念 有词的 对酋长下诅咒 还我骷髅头 这故事 告诉我 印地安的传说
- 不分开觉 你已经离开我 不知不觉 我跟了这节奏 后知后觉 又过了一个秋 后知后觉 我该好好生活 我该好好生
epoch 250, perplexity 1.152017, time 0.77 sec
- 分开 问候我 谁是神枪手 巫师 他念念 有词的 对酋长下诅咒 还我骷髅头 这故事 是诉我 印地安的传说
- 不分开觉 你已经离开我 不知不觉 我跟了这节奏 后知后觉 后知后觉 迷迷蒙蒙 你给的梦 出现裂缝 隐隐作痛
循环神经网络的简洁实现
定义模型
我们使用Pytorch中的nn.RNN
来构造循环神经网络。在本节中,我们主要关注nn.RNN
的以下几个构造函数参数:
input_size
- The number of expected features in the input xhidden_size
– The number of features in the hidden state hnonlinearity
– The non-linearity to use. Can be either ‘tanh’ or ‘relu’. Default: ‘tanh’batch_first
– If True, then the input and output tensors are provided as (batch_size, num_steps, input_size). Default: False
这里的batch_first
决定了输入的形状,我们使用默认的参数False
,对应的输入形状是 (num_steps, batch_size, input_size)。
forward
函数的参数为:
input
of shape (num_steps, batch_size, input_size): tensor containing the features of the input sequence.h_0
of shape (num_layers * num_directions, batch_size, hidden_size): tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided. If the RNN is bidirectional, num_directions should be 2, else it should be 1.
forward
函数的返回值是:
output
of shape (num_steps, batch_size, num_directions * hidden_size): tensor containing the output features (h_t) from the last layer of the RNN, for each t.h_n
of shape (num_layers * num_directions, batch_size, hidden_size): tensor containing the hidden state for t = num_steps.
现在我们构造一个nn.RNN
实例,并用一个简单的例子来看一下输出的形状。
1 | rnn_layer = nn.RNN(input_size=vocab_size, hidden_size=num_hiddens) |
torch.Size([35, 2, 256]) torch.Size([1, 2, 256])
我们定义一个完整的基于循环神经网络的语言模型。
1 | class RNNModel(nn.Module): |
类似的,我们需要实现一个预测函数,与前面的区别在于前向计算和初始化隐藏状态。
1 | def predict_rnn_pytorch(prefix, num_chars, model, vocab_size, device, idx_to_char, |
使用权重为随机值的模型来预测一次。
1 | model = RNNModel(rnn_layer, vocab_size).to(device) |
'分开哪同弥C句句脑脑句句'
接下来实现训练函数,这里只使用了相邻采样。
1 | def train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device, |
训练模型。
1 | num_epochs, batch_size, lr, clipping_theta = 250, 32, 1e-3, 1e-2 |
epoch 50, perplexity 9.973436, time 0.53 sec
- 分开 我不了的让我 像的可爱女人 坏坏的让我疯狂的可爱女人 坏坏的让我疯狂的可爱女人 坏坏的让我疯狂的可
- 不分开不 你想你 我不多 想 你不要 我不能再想 不要再想 我想 你想你 我不能不想 我不能你想 我不要
epoch 100, perplexity 1.292984, time 0.61 sec
- 分开始我不 泪被 三管成回忆 就人在直到 我 它回忆的 太还在一个秋 黄沙录像 是那着我 想开始风呼
- 不分开 你是你在抽离 不知不觉 你已经离开我 不知不觉 我跟了这节奏 后知后觉 又过了一个秋 后知后觉 我
epoch 150, perplexity 1.075873, time 0.58 sec
- 分开 我不了泪 漂 没有一口 我有悲 什么 多难熬 心穿你 娘子却依旧每日折一枝杨柳 在小村外的溪边河
- 不分开 你是你在抽离 不知不觉 你已经离开我 不知不觉 我跟了这节奏 后知后觉 又过了一个秋 后知后觉 我
epoch 200, perplexity 1.034574, time 0.59 sec
- 分开 我不了走 为什么来到 这故事 告诉我 印地安的传说 还真是 瞎透了 什么都有 沙漠之中怎么会有泥
- 不分开 你我不带 你 我 能够远远单纯 是些不 是你知道过 是雨的甜 还真下心抽的 娘著空到的溪边河 默
epoch 250, perplexity 1.033936, time 0.52 sec
- 分开 我不了那个人 又过是好不透 想要是你不会 不知 觉已经成了永垂不朽的诗篇 我给你的爱写在西元前 深
- 不分开 你却已在抽人 快不是再说你 我都会话 你 后知后觉 迷迷蒙蒙 你给的梦 出现裂缝 隐隐作痛 怎么沟